凤(县)-太(白)矿集区成矿地质背景

凤-太矿集区位于秦岭泥盆系贵金属-多金属成矿带中部,地处西秦岭东侧,矿集区内已探明八卦庙超大型金矿床和双王、庞家河两处大型金矿床,多处小型金矿床及金矿点; 铅硐山、银洞梁、八方山3处大型铅锌矿床,手搬崖、峰崖、黑崖、银母寺4处中型铅锌矿床,多处小型矿床及十余个矿点(图3-2),探明金储量超过125t,铅锌金属储量近500×104t(其中锌360×104t)。金、铅锌矿石品位高(Au>3.5×10-6,(Pb+Zn)>7×10-2),已探明的10处大中型金、铅锌矿床均已开发利用。

凤-太矿集区(或称凤县-太白地区、凤-太矿田/盆地)地处秦岭造山带泥盆系金-多金属成矿带中部,其大地构造位置位于华北板块与扬子板块的夹持部位。由于晚海西期—印支期(特别是印支期)两大板块的强烈碰撞以及东部佛坪隆起和西部罗汉寺隆起的影响,秦岭微板块发生强烈的南北向对冲推覆造山作用,中生代区内又发生强烈的陆内逆冲推覆和东西向的隆升作用,致使区内褶皱和断裂十分发育,并形成在NE向基底隆起基础上发育起来的NE向隆起带和凹陷带(盆地; 图3-3),奠定了区内现今的构造格局。

泥盆纪秦岭在总体收缩和扩张的板块构造机制和基底隆升的垂向构造复合叠加下形成以地垒、地堑为组合特征的统一而又分割的盆地体系,使泥盆系周缘蚀源区多样化。秦岭广泛发育的中新元古代火山岩系是泥盆纪盆地的直接物源区和蚀源区,为泥盆纪盆地提供了丰富多样的剥蚀矿源。各一级沉积盆地赋存的三级构造热水沉积成矿盆地中(方维萱,1999)发育的“礁硅岩套”(王集磊等,1996)和深水-半深水浊积岩相热水沉积细碎屑岩为秦岭热水沉积金-多金属矿石建造的含矿建造; 同时也是秦岭泥盆系热水沉积多金属矿石建造矿床定位构造空间和保存的有利构造条件。由于秦岭泥盆纪的区域及深部构造扩张背景,因而深部发育的流体热源、热水流体为成矿提供了成矿物质来源及成矿动力学条件。

图3-2 秦岭造山带地质构造及金属矿产分布示意图

泥盆纪以后秦岭发生了两期重大的构造事件,即:①晚海西期—印支期扬子板块、秦岭微板块和华北板块的俯冲碰撞主造山作用;②中—新生代的陆内造山作用。这两期重大的构造事件对秦岭泥盆纪热水沉积多金属矿床的改造富化和再造提供了动力和热源,尤其对金成矿起着至关重要的富集成矿作用(钟建华,1997; 钟建华等,1997; 刘方杰等,1999)。显然,秦岭泥盆系热水沉积金-多金属矿床是秦岭造山带演化过程中形成的特殊地质体,其分布受泥盆系热水沉积构造成矿盆地控制。

凤-太泥盆纪盆地西临甘肃西-成盆地,东临镇-旬盆地。位于成县-凤县的基底隆起分隔了西-成盆地与凤-太盆地,凤-太盆地西侧为白水江古陆,东侧是佛坪古陆,分隔了其与镇安盆地。凤-太盆地是总体东西长、南北宽的菱形拉分盆地,为南秦岭泥盆系中带的中部。该盆地的北部边界同生断层为凤州-靖口关断裂(商-丹带西段),南部边界同生断层为留坝断裂。凤县-凤镇-山阳(西段)及酒奠梁-镇安-板岩镇(西段)两条巨型同生断裂分别从凤-太拉分盆地北部和南部穿过,是穿盆同生断裂。这4条同生断裂控制了凤-太泥盆纪沉积盆地的形成与演化。在凤-太矿集区中部西河一带近SN向同生断裂及受其控制发育的近SN向水下隆起,又将其分割成西部凤县二级盆地、东部太白二级盆地(方维萱等,2000b)。

图3-3 凤-太矿集区执水沉积构造成矿盆地及矿产分布略图

表3-1 凤-太泥盆纪热水沉积盆地分级、成矿建造和盆地构造类型

注:据方维萱等,2000b; 薛春纪,1997。

凤-太盆地的4个三级热水沉积构造成矿盆地(表3-1),由于受凤-太一级拉分盆地左行剪切拉分应力的控制,基本上为呈右行雁行排列的强烈沉降盆地(图3-3)。它们控制着凤-太热水沉积盆地中95%以上的矿产。这些三级热水沉积成矿盆地两侧不同级别的同生断裂既控制了盆地的边缘,又控制着盆地内的地层和构造-热水沉积岩相的发育。同时盆地内还发育着低序次的同生断裂,将三级盆地内部分割为一系列雁行平行排列的四级热水沉积微型盆地,并充填了多金属矿石建造矿床的含矿建造(矿源层)。微型盆地内的次级沉降洼地控制着矿床的富矿地段(刘方杰等,1999,2000)。秦岭造山带泥盆纪呈现“两缝三块”的大地构造格局,秦岭板块内部发育了一系列伸展断裂,其不仅控制了泥盆系的沉积分区及岩相古地理,而且在三级热水沉积盆地内发生了海底喷流沉积作用,形成了以Pb-Zn、Au为代表的多金属矿源层或矿体,为以后的构造岩浆活化成矿提供了丰富的物质基础; 晚海西期—印支期及燕山期的构造岩浆作用,使得泥盆系矿源层中的成矿物质(Au、Pb-Zn等)重新活化迁移,在有利的(构造)部位富集沉淀而形成矿床,构成了秦岭泥盆系中丰富而又独具特色的构造控矿+层位控矿+岩相控矿的“三控”矿床。因此,现今凤-太矿集区铅锌矿床都产在中、晚泥盆世受边界断裂旁侧的次级断裂及内部同生断裂控制的热水沉积成矿盆地内。含铅锌的成矿流体一般形成3个赋矿层位,即:①古道岭组内部;②古道岭组与星红铺组界面; ③星红铺组内部。赋矿岩层为硅质岩、硅化灰岩。以第②赋矿层位的铅锌矿最具经济价值。其余两个含矿层位虽已发现多处铅锌矿点,但规模较小、品位较低,现今尚未发现有较好经济价值的矿产地。目前一般认为凤-太盆地的铅锌矿床属海底热水喷流沉积-改造型矿床,金矿床属构造-岩浆改造型矿床。

凤-太盆地泥盆纪时期属于碰撞造山过程中俯冲作用发生时出现的前陆盆地。随后在碰撞造山时期发生强烈的褶皱、压缩与伸展作用,发育大规模的左行剪切变形,形成多处韧-脆性剪切带。经历碰撞造山作用后,整个西-成-凤-太盆地泥盆系全面褶皱变形。

根椐凤-太矿集区褶皱、断裂的规模、形态、产状及组合特点,结合聚矿构造理论分析,研究认为凤-太矿集区总体构造为一个大的对冲推覆体系,由南向北以铅硐山-水泊沟背斜南翼断裂、银母寺背斜北翼断裂、白杨沟-王家塄背斜南翼断裂为界,可分为地垒、地堑和逆冲推覆带3部分,并非一个复式向斜或复式背斜。区内由西向东可分为龙王沟-杜家河、上白云-江口、黄柏塬-二郎坝3个NE向基底隆起带。

凤-太矿集区主要出露泥盆系,其次为少量石炭系—二叠系(图3-4)。中泥盆统古道岭组下岩段主要为陆源砂岩、岩屑砂岩及砂页岩,属一套陆源中—细碎屑岩; 上岩段主要为碳酸盐岩组成,岩性有生物灰岩、含长英质碎屑灰岩、白云质灰岩及含炭灰岩等。上泥盆统星红铺组岩性是以粉砂岩、砂页岩为主的浊积岩系,属钙质细碎屑岩。在中泥盆统古道岭组与上泥盆统星红铺组的过渡部位分布着一套热水沉积岩,是铅锌矿床的赋矿部位。凤-太泥盆纪一级拉分盆地位于秦岭微板块北半部,属板内拉分盆地,其南界同生断层为留坝断层,北界同生断层为商-丹带(西段),中部凤县-凤镇-山阳同生断层及酒奠梁-镇安-板岩镇两条NNW向同生断裂的西段分别从拉分盆地中通过,为穿盆同生断裂,是控制三级热水沉积盆地的主控因素。西河SN向同生断裂将凤-太盆地分割为东部太白二级盆地及西部凤县二级盆地,二级盆地范围经遥感解译可较清楚地圈定。银母寺中型铅锌矿床、八卦庙超大型金矿床及八方山-二里河大型铅锌多金属矿床位于凤县二级盆地东北缘上,产于银母寺-八卦庙-八方山拉分式三级构造热水沉积成矿盆地内。铅硐山及东塘子两个大型铅锌矿床及手搬崖、银硐梁、峰崖3个中型铅锌矿床位于凤县二级盆地西南缘上,产于铅硐山-双石铺复合断陷型三级构造热水沉积盆地中(方维萱,1999)。

图3-4 西秦岭地区礼县-凤县-太白矿集区地质简图

矿集区内中、上泥盆统热水沉积建造发育,古构造环境为晚古生代构造裂陷沉降带中的次级断陷海盆。NWW-EW向及NE向同生断裂形成多个次级断陷海盆,控制了区内金-多金属矿产的分布。铅锌矿(带)均产于古岔河-殷家坝复向斜两翼的次级紧闭倒转背斜的鞍部及近鞍部两翼。银洞梁-铅硐山铅锌矿集小区控矿背斜南翼倒转,南翼矿化好于北翼矿化。八方山-银母寺铅锌矿区控矿背斜北翼倒转,北翼矿化明显好于南翼矿化。

区内铅锌矿床(点)既受NWW向构造控制,也受NE向构造控制,具有一定规模的铅锌矿床都产于NWW向背斜与NE向隆起的交汇部位。因此,区内铅锌矿床(点)具有格子状分布的特征,且铅锌矿床具有明显的NWW向分带性。自南向北可分为7个铅锌成矿带,依次为铅硐山-水柏沟、麻沟-洞沟、丹桂沟-水獭沟、银母寺-大黑沟、三角崖-甘沟、尖端山-八方山及白杨沟-长沟-洞沟铅锌成矿带。前两个铅锌成矿带位于古岔河-殷家坝复向斜南翼,其余铅锌成矿带位于北翼。

区内出露地层主要为中泥盆统古道岭组(D2g)结晶灰岩和上泥盆统星红铺组(D3x)千枚岩等,属浅变质的浅海相碳酸盐岩-泥质碎屑岩。区内构造主要为NW—NWW向的褶断带及NEE—NE向的隆起及断裂密集带。区内岩浆岩不发育,主要为东部的西坝岩体、北部的石地沟小岩体、NW向的酸性岩脉带及充填于NE向断裂中的燕山期中性岩脉,其中酸性岩脉与金矿关系密切; 中性岩脉对铅锌矿体起破坏作用。

区内铅锌矿主要受次级热水沉积盆地中次级背斜控制。铅锌矿体主要赋矿层位为古道岭组灰岩与星红铺组千枚岩界面附近,含矿岩石主要为硅质岩、硅化灰岩、铁白云质硅质岩等一套热水沉积岩石。A型褶皱、紧闭背斜(特别是背斜倒转翼及倾伏部位)与层间断裂是热水沉积-改造型铅锌矿的主要控矿构造。铅锌矿空间分布呈现一区多带、一带多矿和一矿多体的特点,矿体展布具有连续性和成群性。金矿床受区域性NWW向逆冲推覆断裂下盘的韧性剪切带与NE向断裂带交汇部位控制。

区内岩浆活动强烈,岩浆岩主要分布于东部,而中西部较少见。岩浆的侵入明显受区域性深大断裂控制,因此岩体主要呈NE向和NW向,与区域主体构造线方向一致。岩石类型从超基性到酸性都有,但以中、酸性为主; 侵入时代有加里东期、海西期、印支期、燕山期,而以印支期和燕山期为主,这与区内印支期、燕山期发生强烈的造山运动有关。岩体的形成具有多期、多阶段性特征。代表性岩体有黄柏源岩体、西坝岩体和太白岩体等。西坝岩体位于太白县太河乡、王家塄乡,长34km,宽1.3~8.9km,面积150km2,可分解为26个侵入体、8个单元、两个岩浆演化系列,主要岩石有花岗闪长岩、石英闪长岩、二长花岗岩、钾长花岗岩、斜长花岗岩和二长花岗斑岩等。张宗清等(2006)对西坝岩体花岗闪长岩锆石的U-Pb同位素年代学研究表明,锆石U-Pb等时线年龄为(201.2±3.3)Ma;其二长花岗岩的LA-ICP-MS锆石U-Pb同位素年龄为(219±1)Ma(张帆等,2009),均属印支期。该岩体蚀变包括角岩化(黑云母石角岩、矽线石堇青石角岩、空晶石红柱石角岩)、大理岩化,北侧有双王金矿,多处铜、铅锌矿床(点)。太白岩体不同类型花岗岩形成于燕山期,6件锆石206Pb/208Pb年龄平均值为(115.9±3.8)Ma(张宗清等,2006)。脉岩类以中、酸性为主,基性次之,均沿断裂呈带状分布。按展布方向可分为NWW向和NE向两组。NWW向脉岩以酸性为主,NE向脉岩以中性为主。脉岩的侵入对区内铅锌、铜多金属及金矿化有一定关系。NWW向脉岩带附近常分布有金水系沉积物异常,发现有金矿(化)点; NE向脉岩带当其切割NWW向含矿带时,可使矿化进一步富集,矿体延深变大,对金矿尤为明显。总的来看,区内岩浆活动具有东强西弱、南北强中间弱的特点。如此强烈的岩浆活动,为区内金属矿产的形成提供了热动力和部分成矿物质。

区内1:5万区域地球化学Pb、Zn、Ag、Hg等异常区受控于凤-太矿集区格子状构造,展布特征与地质、航磁异常特征一致。异常区的分布沿NE向及NWW向有一定的对称性。根椐铅锌异常的分布特点,可将凤-太矿集区西部铅锌异常分为4个区,即槽头沟-铅硐山异常区、银厂沟-洞沟异常区、红光-鹿母寺异常区和尖端山 -八卦庙异常区。

凤-太矿集区已完成了全区1:5万化探分散流扫面工作,对Cu、Pb、Zn、Au、Ag、As、Sb、Hg、Ni、Co、Cr、V、Ti、Mn、Bi、Mo、B等17个分析元素的测试结果进行地球化学场的特征研究认为,该区富集Pb、Zn、Ag、Au、As、Hg、Sb等7种元素,其次是Cu、Bi,但Ni、Co、Cr、V、Mn、Ti、Mo、B等8种元素相对贫化,其平均值小于克拉值。

1)Sb、Hg元素与Pb、Zn、Ag、Au、Cu等常出现综合异常,且范围较大。该区从东向西,由北向南丰度递增。

2)Cu元素在区内由西向东递减。在岩体或隐伏岩体外接触带Cu-As元素组合出现高值场,也是找金有利地段。

3)Pb、Zn、Ag元素自西向东,由南向北递减。

4)Au元素含量西部高于东部,北部大于南部,全区含量在(0.5~270)×10-9之间变化。

5)Pb-Zn-Ag-As-Hg(Sb)组合是层控铅锌(银)矿床特征; Pb-Zn-Ag-Cu-Au-As-Hg组合是层控铅锌矿床受后期改造特征;Au-Cu-(Hg-As)组合是后期叠加的反映;碳酸盐岩破碎带中金矿床特征元素组合为Cu-Au-As,如双王金矿; 细粒碎屑岩断裂带金矿(化)床特征元素组合为Au-As-Ag,例如八卦庙金矿;碳酸盐岩破碎带Ag(Au)矿床特征元素组合为Pb-Ag-Au,如古迹金矿。

6)Pb-Zn-Ag、Cu-As-Au均呈正相关; Pb、Zn、Ag与Cu、As、Au元素呈负相关。但在很多Pb、Zn(Ag)矿床中,有高的Au、Cu(As)元素含量,是Pb、Zn矿床受到多次后期改造,在空间位置上叠加组合的结果,但在成因上属不同的两个系列。如:各重要的Pb、Zn、Ag矿床异常中Cu、Au元素异常高值点与Pb、Zn、Ag主要高值点大多不重合,即分布在其边部或外侧。

7)As、Hg、Bi元素,特别是As元素,区域高值地球化学场明显地反映了断裂带的部位。Cu、Pb、Zn、Ag元素的地球化学场中,除已知矿带与高值场区吻合外,在零星点异常或弱异常区,当处于连续的或断续成带状展布的高背景地球化学场内时,指示找盲矿地段。

8)从各元素地球化学场特征看,场值几何模式与磁、重力等值线十分吻合,反映了东部为NWW向场值带,西部为NE向场值带,而中部很多场值带呈SN向,反映了SN向断裂带的存在。

根椐1:5万区域遥感解译及重磁反演资料(李领军等,1995),结合矿产分布特征分析,凤-太矿集区主要金属矿产多分布于不同级别的环形构造、线性构造复合、交切部位。凤-太矿集区两个主要矿产聚集区的分布范围受两个一级环形构造、区域线性构造、岩体及基底隆起的夹持区控制。凤-太矿集区南部铅锌矿化区由于印支期—燕山期的西坝岩体向西侵入,受到长期的左旋剪切应力作用,而北部金矿化区则因此遭受短期的右旋剪切(王相等,1996),故前者卫星遥感影像为环状,内部发育4组NWW向线性密集带构造,后者表现为大圆环内部发育NW向与NE向线性构造和小圆环状的岩浆热液活动构造,这些较好地反映了区域良好的聚矿构造条件。