先天八卦对角线相交于一点

(1)通过证明△ AOF ≌△ BOE ,得 OE = OF? (2)证明 OF : OE = AO : OB , AO : OB =tan60°=得 OF = OE (3) OF =tan( α -45°) OE 或 OF =tan(135°- α ) OE

试题分析:1)证明:∵四边形 ABCD 是正方形,对角线的交点为 O ,

∴ AC = BD , OA = OC , OB = OD ,∴ OA = OB .

∵ AC ⊥ BD , AG ⊥ BE ,∴∠ FAO +∠ AFO =90°,∠ EAG +∠ AEG =90°,

∴∠ AFO =∠ BEO .

又∵∠ AOF =∠ BOE =90°∴△ AOF ≌△ BOE .∴ OE = OF .

(2) OF = O E

∵四边形 ABCD 是菱形,对角线的交点为 O ,∠ ABC =120°

∴ AC ⊥ BD ,∠ ABO =60°?∴∠ FAO +∠ AFO =90°.

∵ AG ⊥ BE ,∴∠ EAG +∠ BEA =90°.∴∠ AFO =∠ BEO 又∵∠ AOF =∠ BOE =90°

∴△ AOF ∽△ BOE .

∴ OF : OE = AO : OB .∵∠ ABO =60°, AC ⊥ BD ,∴ AO : OB =tan60°=.

∴ OF = OE

(3) OF =tan( α -45°) OE 或 OF =tan(135°- α ) OE

点评:本题考查全等三角形和正方形、菱形、等腰梯形,解决本题的方法是熟悉全等三角形的判定方法和正方形、菱形、等腰梯形的性质