天文小科普:视觉上的多普勒效应——红移和蓝移
红移是指物体向远离地球的方向移动时,它所发出的光波长随之增加。蓝移与红移相反,是指物体向靠近地球方向移动引起的波长减小。
红移和蓝移是多普勒效应的可视版本。你也许已经亲身体会过多普勒效应的影响,最好的例子,就是当一辆正在鸣警笛的车向你驶来时,警笛的音调要远高于它经过并离开你的时候。这种音调的升高,则是与频率的增加相对应的。
多普勒效应也同样适用于光波。当一个物体向靠近我们的方向移动时,光的波长会向光谱的蓝色一端移动;当物体向远离我们的方向移动时,波长则会向红色一端移动。这种变化能够在光谱线上被观察到。
红移和蓝移的图示
遥远星系超星系团光学光谱中的吸收线(右)与太阳光谱中的吸收线(左)相比较 箭头表示红移 波长向红移及以上方向增加(频率减小)
红移与蓝移的 历史
多普勒效应是以1842年第一次对这个现象作出物理解释的物理学家,克里斯蒂安·安德烈亚斯·多普勒的姓氏命名的。随后,这个假说在1845年被荷兰科学家克里斯托弗·巴洛特实验证实。
多普勒红移是由法国物理学家阿曼德·斐索在1848年首次提出的。他指出恒星谱线位置的移动与多普勒效应有关,因此,多普勒红移也被称为“多普勒-斐索效应”。1868年,英国天文学家 威廉·哈金斯 就是运用这个理论,首次测出了恒星相对于地球的运动速度。
在1871年,当利用太阳自转测出在太阳光谱的 夫朗 和斐谱线有0.1埃的红光位移时,光学红移的理论得到了证实。1901年,阿里斯塔克·别洛波尔斯基在实验室中利用一组旋转的镜子证明了光学红移。
寻找红移
来自遥远物体光源的光谱可以通过光谱学来测量。为了测量出红移,需要找出光谱中的一些特征,比如吸收线、发射线或其他光强的变化。而发现红移后,需要一个有相似特征的光谱来进行比较才能够测量,可以使用宇宙中一个非常常见的元素,氢元素的原子光谱。
在上面的图中,你可以看到两个光谱。一个源自光谱已知的太阳光,一个来自遥远星系的超星系团。当我们比较这两者时,我们可以看到太阳和遥远星系的氢线之间存在着相关性,它们之间唯一不同的是,星系光谱中的吸收线都向红端移动了。这表明红移现象正在发生,这个星系正在远离我们(或者我们正在远离星系)。
红移和蓝移的计算方法
当我们找到一个已知的光谱线时,我们就可以计算出它在光谱中的波长。然后我们就可以通过这个来计算出红移的值。
从上面的图表中,我们可以在656.2nm处找到氢α发射线。然后我们就可以基于观察到的光谱来计算出波长。对于这个例子,观察到的线在675纳米处。这样,我们就可以用一个简单的方程式来计算红移的数值了。
代入我们所观测到的波长数据:
z是一个无因次量,其正值表示红移,负值表示蓝移。
红移实例
当今已知红移最高的天体是星系。最可靠的红移来自光谱数据,目前确认的光谱红移最高的星系是IOK-1,红移z=6.96。
(伽玛射线暴GRB 080913)
已观测到最遥远的伽玛射线暴是GRB 080913,它的红移z=6.7。
相关知识
多普勒效应 (英语:Doppler effect)是波源和观察者有相对 运动 时,观察者接受到波的 频率 与波源发出的频率并不相同的现象。远方急驶过来的火车鸣笛声变得尖细(即频率变高,波长变短),而离我们而去的火车鸣笛声变得低沉(即频率变低, 波长 变长),就是多普勒效应的现象,同样现象也发生在私家车鸣响与火车的敲钟声。
这一现象最初由 奥地利 物理学家 多普勒 于1842年发现。 荷兰 气象学家 拜斯·巴洛特 在1845年让一队喇叭手站在一辆从 荷兰 乌德勒支 附近疾驶而过的敞篷火车上吹奏,他在站台上测到了 音调 的改变。这是科学史上最有趣的实验之一。
多普勒效应从19世纪下半叶起就被天文学家用来测量恒星的 视向速度 。现已被广泛用来佐证观测 天体 和 人造卫星 的运动。
BY: Tim Trott
FY: Beakabuse
转载还请取得授权,并注意保持完整性和注明出处