莱布尼茨神义论
什么是神义论,什么是人义论
Theodicy 神义论:这是由两个希腊词语合成的∶theos,「神」,和字根dik-,「义」。按弥尔顿(Milton)的解释,那是「为神对人的作为辩护」,为了证明神是对的,是值得称颂的,虽然有时看来情况好像不是如此。神义论一个核心的问题是∶在世界种种邪恶面前,我们怎能相信神是良善又拥有完全权柄的呢?在坏人、恶事、亵渎神、伤害人;有害的环境、事件、经验和思想的影响下,人间的价值不断被浪费、破坏、摧毁,包括真实的和潜在的价值;简言之一切引致我们说「那真不应该发生」的事实,无论是自然的或道德的,都是神义论尝试解答的问题。所有神义论对邪恶的看法都是颇一致的,那就是说有了它,就可以达到因它的存在才能达到的更高的善;
人义论,用基督教的话说,大致就是 个体不求诸神而自救;这个人义论也就成了一种极端的个体主义和虚无主义的代名词。基于偶在的痛苦,人义论相信幸福是可以由人自身去求得的,所以把上帝放逐了。 可见人义论与神义论是反过来。
莱布尼茨的简介
戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年7月1日-1716年11月14日),德意志哲学家、数学家,历史上少见的通才,被誉为17世纪的亚里士多德。
主要成就;哲学:大陆理性主义高峰,单子论,预见现代逻辑学和分析哲学诞生。数学:微积分,二进制。
代表作品《神义论》,《单子论》,《论中国人的自然神学》。
为了纪念他和他的学术成就,2006年7月1日,也就是莱布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。
怎样理解莱布尼兹的神正论观点
《神正论》是莱布尼茨在世时发表的唯一一部大部头著作。
本书名为谈神,实为谈人和人的自由。作者在“序言”中曾指出:“有两个著名的迷宫,常常使我们的理性误入歧途:其一关涉到自由与必然的大问题,这一迷宫首先出现在恶的产生和起源的问题中;其二在于连续性和看来是其要素的不可分的点的争论,这个问题牵涉到对于无限性的思考。
第一个问题几乎困惑着整个人类,第二个问题则只是让哲学家们费心。”如果说莱布尼茨的其他著作主要阐述的是“单子论”或“连续性”与“不可分的点”关系问题,则本著着重阐述的则是“几乎困惑着整个人类”的“自由与必然的大问题”或“人的自由”问题。
莱布尼茨的哲学著作有哪些?
17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。
微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼茨在1673—1676年间也发表了微积分思想的论著。
以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。
只有莱布尼茨和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。
只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出***同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。
因此,微积分“是牛顿和莱布尼茨大体上完成的,但不是由他们发明的”。 然而关于微积分创立的优先权,在数学史上曾掀起了一场激烈的争论。
实际上,牛顿在微积分方面的研究虽早于莱布尼茨,但莱布尼茨成果的发表则早于牛顿。 莱布尼茨1684年10月在《教师学报》上发表的论文《一种求极大极小的奇妙类型的计算》,是最早的微积分文献。
这篇仅有六页的论文,内容并不丰富,说理也颇含糊,但却有着划时代的意义。 牛顿在三年后,即1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家莱布尼茨的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。
他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外”(但在第三版及以后再版时,这段话被删掉了)。 因此,后来人们公认牛顿和莱布尼茨是各自独立地创建微积分的。
牛顿从物理学出发,运用 *** 方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。
莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。
1713年,莱布尼茨发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。高等数学上的众多成就 莱布尼茨在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。
他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。 莱布尼茨曾讨论过负数和复数的性质,得出复数的对数并不存在,***扼复数的和是实数的结论。
在后来的研究中,莱布尼茨证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论,此外,莱布尼茨还创立了符号逻辑学的基本概念。
1673年莱布尼茨特地到巴黎去制造了一个能进行加、减、乘、除及开方运算的计算机。这是继帕斯卡加法机后,计算工具的又一进步。
他还系统地阐述了二进制计数法,并把它和中国的八卦联系起来,为计算机的现代发展奠定了坚实的基础。丰硕的物理学成果 莱布尼茨的物理学成就也是非凡的。
1671年,莱布尼茨发表了《物理学新假说》一文,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,它将带着处于完全静止状态的物体的部分一起运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了《关于笛卡儿和其他人在自然定律方面的显著错误的简短证明》,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。
他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的绝对时空观,认为“没有物质也就没有空见,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样,可是这些东西虽有区别,却是不可分离的”。
这一思想后来引起了马赫、爱因斯坦等人的关注。 1684年,莱布尼茨在《固体受力的新分析证明》一文中指出,纤维可以延伸,其张力与伸长成正比,因此他提出将胡克定律应用于单根纤维。
这一假说后来在材料力学中被称为马里奥特——莱布尼茨理论。 在光学方面,莱布尼茨也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。
可以说莱布尼茨的物理学研究一直是朝着为物理学建立一个类似欧氏几何公理系统的目标前进的。多才多艺的莱布尼茨 莱布尼茨中奋斗的主要目标是寻求一种可以获得知识和创造发明的普遍方法,这种努力导致许多数学的发现。
莱布尼茨的多才多艺在历史上很少有人能和他相比,。
斯宾诺莎,莱布尼茨“自然神论”主要观点,历史意义~
自然神论(Dei *** )是17到18世纪的英国和18世纪的法国出现的一个哲学观点,主要是回应牛顿力学对传统神学世界观的冲击。这个思想认为虽然上帝创造了宇宙和它存在的规则,但是在此之后上帝并不再对这个世界的发展产生影响。
自然神论者推崇理性原则,把上帝解释为非人格的始因的宗教哲学理论。又称理神论。由17世纪英国思想家L.赫尔伯特始创,著名代表有J.托兰德、D.哈特利、J.普里斯特利等人,18世纪法国启蒙思想家伏尔泰、孟德斯鸠、卢梭等人也都是具有一定唯物主义倾向的自然神论者。自然神论反对蒙昧主义和神秘主义,否定迷信和各种违反自然规律的 “奇迹”;认为上帝不过是“世界理性”或“有智慧的意志”;上帝作为世界的“始因”或“造物主”,它在创世之后就不再干预世界事务,而让世界按照它本身的规律存在和发展下去;主张用“理性宗教”或“自然宗教”代替“天启宗教”。
今日我们听到自然神论就会联想到“神造了世界却不照管护理这个世界,任其发展”。但是17世纪英国人彻尔布里的赫尔伯特爵士提出的自然神论,是想证明我们人类对上帝的信仰是合乎理性,不需要来自圣经中神的启示。他主张基督教是自然宗教,基督教有一些信仰的确已经超出了自然宗教,自然神论者把这些当作迷信的教士争取信众之作,不予接纳。
自然神论者也反对“预言”的应验和“神迹”作为根据上帝存在的根据。吴尔斯顿严厉批评神迹,他认为基督复活乃是其尸体被门徒所窃,结果他因此被关而死在狱中,不过舍洛克因此得到灵感,写了一本《复活见证受审记》,将新约中的见证一一验证。
在欧洲启蒙运动时期,伏尔泰、狄德罗、卢梭、洛克等启蒙思想家推崇中国文化,认为儒家思想的神学观念是自然神论,莱布尼茨写道:“中国有着令人赞叹的道德,还有自然神论的哲学家学说。”[1]无神论者则认为,孔子学说是无神论,在皮埃尔·培尔(Pierre Bayle)的《历史哲学批判辞典》中,儒者被记载为无神论哲学家。克里斯提安·沃尔夫(Christian Wolff)等人则认为,儒家学说并不是自然神学,而是自然哲学[2]。
托马斯·潘恩的观点颇能代表自然神论者的观点:“我相信一个上帝,没有其它的”,但“我不相信犹太教会、罗马教会、希腊教会、土耳其教会、基督教和我所知道的任何教会所宣布的信条。我自己的头脑就是我自己的教会。”
怎样理解莱布尼兹的神正论观点
《神正论》是莱布尼茨在世时发表的唯一一部大部头著作。
本书名为谈神,实为谈人和人的自由。作者在“序言”中曾指出:“有两个著名的迷宫,常常使我们的理性误入歧途:其一关涉到自由与必然的大问题,这一迷宫首先出现在恶的产生和起源的问题中;其二在于连续性和看来是其要素的不可分的点的争论,这个问题牵涉到对于无限性的思考。
第一个问题几乎困惑着整个人类,第二个问题则只是让哲学家们费心。”如果说莱布尼茨的其他著作主要阐述的是“单子论”或“连续性”与“不可分的点”关系问题,则本著着重阐述的则是“几乎困惑着整个人类”的“自由与必然的大问题”或“人的自由”问题。
论述牛顿与莱布尼兹分别对微积分的产生所起的作用
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止 *** 。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。