欧洲八卦宗师

答:很多数学家在数学领域的贡献是多方面的,根本没有一个准确的排行,如果一定要给出一个排行,那么会带有个人偏见。

艾伯菌我就以个人对数学 历史 的了解,给出一个大致的梯队排行,仅供参考:

第一梯队

欧拉、高斯、牛顿、黎曼

这四位都是神级梯队的数学家,随便哪一个的贡献都是极其重要的,而且他们的贡献不止于数学领域,在物理和其他领域也有着重要贡献。

比如莱布尼茨和牛顿都同时发明了微积分,但是莱布尼茨的名声就没有牛顿大,虽然莱布尼茨发明的微积分比牛顿的更实用,但论其影响力就比不上牛顿了。

而欧拉和高斯,在基础数学领域的贡献都是无与伦比的,而且两人不相上下,现在科学领域随处可见欧拉和高斯的贡献,比如欧拉方程、欧拉常数、高斯分布、高斯定律等等。

而黎曼在高等数学领域的贡献,给众多学科铺平了道路,比如黎曼几何,就给相对论提供了数学基础;而黎曼积分、黎曼流形、黎曼条件等等概念,在高等数学领域随处可见。

第二梯队

欧几里得、阿基米德、彭加莱、希尔伯特、莱布尼茨、陈省身、康托尔、伽罗瓦、柯西、笛卡尔、冯·诺依曼拉格朗日等等。

能排到第二梯队的数学家很多,他们其中一些对基础数学有着开创性贡献,比如欧几里得和阿基米德;另外一些在各自领域,有着极其重要的贡献,比如微分几何之父陈省身,群论的开创者伽罗瓦;其中也不乏全才式人物,比如彭加莱、冯·诺依曼、希尔伯特和莱布尼茨。

第二梯队的数学家,都至少在某个数学领域有着开创性贡献,很难在其中选出六位进行排序;但是像欧几里得、希尔伯特这样有着极其重要贡献的数学家,还是稳稳排在前十的。

另外,还有一些数学家,在数学的某个点上,有着非常杰出的贡献,也非常有名,比如:

(1)安德鲁·怀尔斯,费马大定理的证明者;

(2)艾米·诺特,最伟大女数学家,被誉为“现代数学之母”;

(3)图灵,人工智能之父,在计算机方面的贡献实在太重要了;

(4)哥德尔,哥德尔在现代逻辑学的成就非凡,数学上他是一座不朽里程碑;

……等等等等

这个问题的答案并非是唯一的,什么是伟大的数学家?在我看来,伟大的数学家应具有以下特征,一是对数学的发展做出重大贡献,二是引领了一批数学人才,三是解决本领域关键问题,四是创立学科分支。

以下是我根据上述标准,给出的人类史上最伟大的十位数学家的排名:

第十位:希尔伯特(1862年—1943年)

戴维·希尔伯特,德国数学家。 他提出新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学领域的高峰,对这些问题的研究有力推动数学的发展。希尔伯特是对20世纪数学有深刻影响的人物之一。

希尔伯特培养了一批对现代数学发展做出重大贡献的杰出数学家,他的主要研究有:不变量理论、代数数域理论、几何基础、积分方程等,在这些数学领域中,希尔伯特都做出了重大的或开创性的贡献。

第九位:康托尔(1845年—1918年)

格奥尔格·康托尔,德国数学家。他对数学的贡献是集合论和超穷数理论,这两个理论方法是19世纪末到20世纪初数学领域最杰出的贡献之一。康托尔对数学无穷领域的革命,几乎是由他一个人独立完成的。

第八位:伽罗瓦(1811年—1832年)

埃瓦里斯特·伽罗瓦,法国数学家,是现代数学中分支学科群论的创立者。他在用群论解决根式求解代数方程时总结出的群和域的理论,被人们称之为伽罗瓦群和理论。

伽罗瓦使用群论的方法去讨论方程式的可解性,整套方法被称为伽罗瓦理论,是当代代数与数论的基本支柱之一。他系统化地阐释了为何五次以上之方程式没有公式解,而四次以下有公式解。伽罗瓦贡献非凡。

第七位:笛卡尔(1596年—1650年)

勒内·笛卡尔,法国数学家、哲学家、物理学家,他对现代数学发展做出了重要贡献,被人们称为解析几何之父。但笛卡尔最大的贡献是在哲学方面,他是欧洲近代哲学的奠基人之一,有着“近代哲学之父”之称。

笛卡尔对数学最重要的贡献是创立了解析几何,他的这一成就为微积分的创立奠定了基础,解析几何直到现在仍是重要的数学方法之一。解析几何的创立是数学史上划时代的转折,平面直角坐标系也因此而建立。

第六位:黎曼(1826年—1866年)

波恩哈德·黎曼,德国数学家、物理学家,对数学分析和微分几何做出了重要贡献,开创了黎曼几何,为广义相对论的发展铺平了道路。除此之外,黎曼还对偏微分方程及其在物理学中的应用同样有重大的贡献。

黎曼的贡献影响了19世纪后半期的数学发展,许多杰出的数学家在黎曼思想的影响下取得了数学分支的许多辉煌成就。他的著作不多但却非常深刻,黎曼函数、黎曼积分,黎曼引理等理论,都是以他名字命名的。

第五位:庞加莱(1854年—1912年)

亨利·庞加莱,法国数学家,他被公认是十九世纪后四分之一和二十世纪初的领袖数学家,是数学和应用方面的最后一个全才。庞加莱在数学方面的杰出贡献对二十世纪和当今数学造成极其深远的影响。

庞加莱在数论、代数学、几何学、拓扑学等领域,都有非常重要的贡献,最重要的工作是在函数论方面。他创立自守函数理论,引进富克斯群和克莱因群构造基本域。他利用级数构造了自守函数并发现其效用。

第四位:牛顿(1643年—1727年)

艾萨克·牛顿,英国物理学家,被称为百科全书式的“全才”。牛顿在力学方面的贡献不再赘述,主要说一下数学方面的。牛顿在数学领域的主要贡献是在微积分学、广义二项式定理,以及牛顿恒等式和牛顿法。

微积分的出现,导致了数学分析分支的诞生,并进一步发展为微分几何、微分方程、变分法等等,这些还促进了理论物理学的发展。微积分是牛顿最卓越的数学成就,他在解析几何与综合几何方面都有大贡献。

第三位:高斯(1777年—1855年)

约翰·卡尔·弗里德里希·高斯,德国数学家,是近代数学奠基者之一,他被认为是世界上最重要的数学家之一,被称为“数学王子”。以他名字“高斯”命名的数学成果达一百多个,在史上数学家中首屈一指。

高斯对数论、代数、统计、分析、微分几何等领域都有卓越的贡献,他发现了质数分布定理和最小二乘法,得出高斯钟形曲线。高斯总结了复数应用,导出三角形全等定理的概念,他还是微分几何的始祖之一。

第二位:欧拉(1707年—1783年)

莱昂哈德·欧拉,瑞士数学家,被人称为“全才且最多产的数学家”。欧拉是18世纪最杰出的数学家之一,他不但为数学领域作出贡献,更把数学推至物理的领域。欧拉写下了太多的数学经典著作和公式定理。

欧拉是解析数论的奠基人,他提出欧拉恒等式,建立了数论和分析之间的联系,使得可以用微积分研究数论。他在数论、代数、无穷级数、函数概念、初等函数、微分方程及几何学等领域,都是杰出的贡献。

第一位:阿基米德(前287年—前212年)

阿基米德,古希腊的数学家,除此之外,他还有很多的其它头衔,被人称为“百科式科学家”,他与高斯、牛顿并并称为世界三大数学家。阿基米德在数学上有着极为光辉耀眼的成就,尤其是在几何学方面。

阿基米德的数学理念中蕴涵着微积分,他的理论已非常接近现代微积分,其中还有对数学上“无穷”的超前研究,并预见了微积分的诞生。阿基米德的几何著作,使得莱布尼茨和牛顿培育出了完美的微积分。

注:莱布尼茨的成就同牛顿(数学领域),主要都是微积分学,不再单独列出。另外,欧几里得与阿基米德同样都是泰斗级的人物,也不再单独列出。

这个排行榜很少能得到世人的公认,每个人心中的数学大师的地位都不一样,我觉得可以这样排。

1.黎曼

黎曼39岁就去世了,他在复分析与黎曼几何都有巨大贡献。复分析上的黎曼猜想,黎曼几何对物理学都有巨大的影响。

2.高斯

古典数论的终结者,用多种方法证明二次互反律,他还是复数的创导者,同样是微分几何大师,高斯博涅定理名垂青史。

3.欧拉

古典数学到现代数学的过度时期的大数学家,用一些看似不正确的数学方法得到了很多正确的数学结果,研究素数与整数联系。

4.庞加莱

拓扑学与微分方程定性理论的开拓者。对相对论也有贡献。

5.牛顿

微积分的发明人,牛顿力学体系创建者,在数学上具有宗师地位。

6.阿基米德

古典数学物理时代的代表人物,杠杆原理求出球的体积。

7.丘成桐

微分几何与微分方程的结合,对广义相对论的正能量猜想的证明等有巨大贡献。

8.陈省身

整体微分几何的大师,陈类的发明人。

9.法尔廷斯

证明蒙代尔猜想。

10.安德鲁怀尔斯

证明费马最后猜想。

数学家浩如烟海,恍如夜空中璀璨的明珠,照亮人类不断前进,他们是上帝的宠儿,是造物主的神奇,是天才的象征,也是人类进步的阶梯。

掰开双手,能称得上伟大的数学家,实在不胜枚举,况且数学的传承性、连续性、迭代性,以及渐进性,实在不好分出个高下。因此下面简单列举一些公认的数学巨匠,排名不分先后,仅供参考。

1、希尔伯特

希尔伯特,德国著名数学家。他于1900年在巴黎第二届国际数学家大会上提出了,新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点。对这些问题的研究,推动了20世纪数学的发展,产生了深远的影响。

希尔伯特领导的数学学派是一面旗帜,他被称为数学界的“无冕之王”,天才中的天才。

2、康托尔

德国数学家,集合论的创始人。父亲是犹太血统的丹麦商人,母亲出身艺术世家。

康托尔开创的集合论,是数学史上的重要革命,让数学进入了新时代。

3、伽罗瓦

伽罗瓦是法国数学家,现代数学的分支,群论的创立者。用群论彻底解决了根式求解代数方程的问题,并由此发展了一整套关于群和域的理论。

伽罗瓦是天才,却又英才早逝,也许是天妒英才,一生坎坷,令人扼腕叹息。

4、黎曼

德国数学家、物理学家,对数学分析和微分几何做出重要贡献,其中一些理论为相对论铺平了道路。

黎曼函数、黎曼积分、黎曼猜想、黎曼流形、黎曼几何等等,可见他纵横数学,来去自如。

5、欧拉

瑞士数学家,18世纪数学界最杰出的数学家之一。他是数学史上最多产的数学家,他的著作大多成为数学的经典著作。

欧拉的身影在数学上随处可见,欧拉公式、欧拉常数等都是熟悉的味道。

6、庞加莱

法国数学家,天体力学家,科学哲学家,研究领域涉及数论、代数学、几何学、拓扑学、天体力学、数学物理、多复变函数论等等。

庞加莱被公认为19世纪后四分之一和20世纪初的领袖数学家,是对数学和它的应用具有全面知识的最后一个人。

7、高斯

德国数学家、物理学家、天文学家,是近代数学的奠基者之一,被认为是数学史上最重要的数学家之一。

高斯对大家来说,实在不太陌生,在中学时代他的名字便如雷贯耳,有着“数学王子”称号的他与阿基米德、牛顿***同被誉为世界三大数学家。

8、牛顿

英国数学家、物理学家、爵士、英国皇家学会会长,百科书式的全才。

牛顿先生对普罗大众简直再熟悉不过了,尤其是那个关于苹果的故事,几乎家喻户晓,遗憾的是他的物理名气远远大于在数学上的名气。

9、阿基米德

数学之神,与欧几里得、阿波罗尼斯并称为古希腊三大巨匠,与牛顿、高斯、欧拉并称为世界四大数学家。

阿基米德原理、阿基米德螺线、阿基米德三角形等在中学时代就为人熟知,还有就是那个亘古流传的皇冠故事。

10、柯西、图灵、笛卡尔、欧几里得、莱布尼茨、柯尔摩哥罗夫、冯·诺依曼、哥德尔……

这个序列可以一直延伸下去,一家之言,仅供参考。关于数学家的深入了解,可参考相关文献资料,在此不作赘述。

以上。

第一,黎曼。

第二,高斯。

第三,庞加莱。

第四,牛顿。

第五,希尔伯特。

第六,欧拉。

第七,柯尔莫哥洛夫。

第八,笛卡尔。

第九,欧几里得。

第十,莱布尼茨。

人类 历史 上伟大的数学家很多,远不止十名,本人对这种排名也是很拒绝的,毕竟不管怎么排都很难服众。数学并不是某一个人的成就,而是广大人民群众创造的,在数学的每一个分支上都有很多杰出的数学家。

数学就像一棵枝繁叶茂的参天大树,如果要说伟大,那么肯定就是各个领域的奠基人和重要推动者最伟大。那么下面就来盘点一下人类 历史 上称得上伟大的数学家,这些人都是被 历史 铭记下来的,当然不排除有一些默默无名的伟大贡献者,在 历史 上却没有留下只言片语,甚至连名字也没有。

其实很多数学家的成就很难分清谁比谁重要,按照各自在数学上的成就可以大致分为以下三个梯队,第一梯队的人绝对可以进前十,处于第二梯队的数学家有很多,第三梯队的数学家就更多了。以下排名比较偏重在纯粹数学领域的成就,仅供大家参考。

第一梯队

阿基米德 、牛顿、高斯、欧拉、黎曼、欧几里得、笛卡儿、莱布尼茨、拉格朗日、伽罗瓦、庞加莱、希尔伯特、康托尔……

第二梯队

哥德尔、格罗滕迪克、阿尔花拉子米、纳皮尔、雅各宾伯努利、傅里叶、柯西、罗巴切夫斯基、布尔、凯莱、勒贝格、华罗庚、陈省身、芒德勃罗、刘徽、约翰伯努利、拉普拉斯、彭赛列、哈密顿、陶哲轩、诺特、阿贝尔、贝叶斯、魏尔斯特拉斯、马尔科夫、克莱因……

第三梯队

毕达哥拉斯、贾宪、祖冲之、丢番图、斐波那契、韦达、费马、帕斯卡、泰勒斯、哥德巴赫、丹尼尔伯努利、泊松、狄利克雷、德摩根、西尔维斯特、斯托克斯、埃尔米特、若尔当、李、闵可夫斯基、哈代、外尔、刘维尔、丘成桐、怀尔斯、拉马努金、狄拉克、克罗内克、罗素、芝诺、图灵、冯诺依曼、达朗贝尔、勒让德、切比雪夫、弗雷德霍姆、雅可比、泰勒……

迄今人类最伟大的数学家前十位,我觉得不同的人可能会有不同的答案,但是几个人无论如何都在会排在前十的,比如牛顿、欧拉、高斯........下面给我出我心目中的前十。

1、艾萨克·牛顿

在我心目中,我把牛顿放在首位,原因就在于他创立了微积分,虽然说微积分是牛顿和莱布尼茨***同创立的,但牛顿的笔记早于莱布尼茨,微积分对 社会 的推动力是空前的。

牛顿在数学上的成就:发现了二项式定理,创立微积分除此之外,牛顿在解析几何和综合几何方面都有突出的贡献。

牛顿在物理上的名气比其在数学上的名气更大。

牛顿在物理上的成就:万有引力;牛顿三大运动定律,还有他在光学方面的成就,他发现白光是由各种不同颜色的光组成的;制造了反射望远镜样机;提出了光的“微粒说”。

2、高斯

高斯为称为“数学王子”,其最为广泛流传的故事是高斯10岁的时候用很简单的方法、很快的速度计算出了从1到100所有整数和的代数题。高斯在数学方面的成就遍及纯粹数学和应用数学各领域,在 代数学、 数论、非欧几何、 微分几何及 复变函数方面都有开创性的贡献。他还把数学应用于天文学、大地测量和磁学的研究,他还发明了“最小二乘原理”。

高斯最有名的的就是高斯分布,又叫正态分布,高斯分布是数学领域最重要的分布,其公式为

3、阿基米德

阿基米德是古希腊数学家,哲学家、力学家、天文学家,被称为“力学之父”。

阿基米德最为出名成就是阿基米德浮力定律,除此之外,他在数学上的成就更是数不胜数,其留下的数学收稿不下10种,阿基米德主要成就是在几何方面,他利用“逼近法”,创立了求远的面积、球的表面积和体积的公式,他还利用割圆法求得π的值介于3.14163和3.14286之间。并研究了螺旋曲线的性质,被后人称为“阿基米德螺旋线”。

4、欧拉

欧拉是瑞士数学家,是大数学家伯努利的学生,欧拉是科学史上最多产的一位杰出的数学家,在其一生中***写了886本书籍和论文。欧拉的文字轻松、通俗易懂,他编写的《无穷小分析引论》、《微分法》和《积分法》等书籍是教科书的典范。他还用多种语言编写过中小学的教科书。

欧拉在数学上的贡献是多方面的,几乎每个领域都是看到欧拉的名字,几何方面有:欧拉线,欧拉定理,欧拉变换公式;代数和分析方面有:四次方程的欧拉解法、欧拉函数,欧拉方程,欧拉常数,欧拉方程,欧拉公式等等。

除此之外,欧拉还创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论。

其他数学家

牛顿、高斯、阿基米德和欧拉是我心目中最大伟大的数学家,位于所有数学家里的第一梯队。除此之外,我心目中的5-10还有莱布尼茨、黎曼、欧几里得、柯西、费马、希尔伯特。

有时我们很难为他们的成就进行排名,就数学而言,有的数学家是在数学的某个领域有非常突出的成就。对数学一个庞大的学科,我们不可能做到对每个领域都很熟悉,因此造成该领域数学家的贡献也就不甚了解,排名难免有偏颇。

除了上面提到的数学家,还有很多我们耳熟能详的伟大数学家,如毕达哥拉斯、伯努利、拉格朗日、拉普拉斯、康托尔、庞加莱.......

1. 阿基米德(公元前287年—公元前212年):

古希腊数学家、力学家。最早用“逼近法”求出了球面积、球体积、抛物线、椭圆面积等。这为后来微积分的出现奠定了基础。而最近从其遗稿中的发现则表明:阿基米德的《方法论》已经“十分接近现代微积分”,这里有对数学上“无穷”的超前研究。

2. 牛顿(1643-1727):

没有人否认牛顿是一个伟大的数学家,他是微积分的发明者之一。

3. 莱布尼兹(1646-1716):

微积分的发明者之一,我们今天都在follow他当年的微积分符号。莱布尼兹也是二进制的发明者之一,有说他发明二进制是受了中国伏羲八卦图的启发。而且据说他还曾经通过传教士,建议中国清朝的康熙皇帝在北京建立科学院。

4. 欧拉(1707-1783):

历史 上最多产的数学家。在数学的各个领域,常常见到以欧来命名的公式、定理、和重要常数。他具有很强的抗干扰能力,工作起来聚精会神,从不受嘈杂和喧闹的干扰,镇静自若。我想这或多或少给当代不得不限于各种俗事的数学家提供了一种工作方式的借鉴。而且其人据说风格高尚,乐于提携晚辈。

5. 傅立叶(1768-1830):

傅立叶变换已经成为工程、数学等领域的最重要数学工具之一。不过可惜的是,中国大学本科数学教育似乎比较轻视傅立叶变换。通常而言,大学数学本科毕业生似乎并不真正理解并会使用傅立叶变换(虽然确实知道其定义与些许性质)。因此,大学数学本科教育阶段似应专门开设傅立叶变换的课程。

6. 高斯(1777—1855):

研究领域极为广泛的数学天才。单单高斯曲率内蕴性质的发现就足以影响人们对曲面的理解,遑论代数基本定理的证明。

7. 阿贝尔(1802-1829):

历史 上最富传奇色彩的天才数学家之一,首次证明了五次方程不可解性,并对椭圆函数做出重要贡献。埃尔米特的说,阿贝尔留下的后继工作,“够数学家们忙上五百年”。

8. 伽罗华(1811-1832):

另外一位天才数学家,群论的创始人,我想这个理由足够充分了。

9. 黎曼(1826-1866):

黎曼发表的论文不多。但一篇数论论文就提出了数学中最重要的猜想之一:黎曼假设。一篇演讲稿就催生了黎曼几何。

10. 希尔伯特(1862—1943):其提出的23个问题是20世纪数学家工作的焦点。数学工作中,单单其提出的希尔伯特空间,就给无数数学工作提供了“居住”场所。

这么说吧,如果真把数学家排名,陈景润大约可以排一万名。数学大师实在太多,普通人终其一生,连山脚都到不了

伟大的物理学家必定是一位伟大的数学家,所以最伟大的数学家需要从最伟大的物理学家里面选,如果我来选,必须是麦克斯韦。