球的体积公式推导
球的体积公式推导过程:v=4/3×πr^3。
球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,也叫做球体。球的表面是一个曲面,这个曲面就叫做球面,球的中心叫做球心。
球体性质:
用一个平面去截一个球,截面是圆面。球的截面有以下性质:
1、球心和截面圆心的连线垂直于截面。
2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2。
3、球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆,在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,把这个弧长叫做两点的球面距离。
两个同高的几何体,如果与底等距离的截面积总相等,那么这两个几何体的体积相等,原文是“幂势既同,则积不容异”,在西方被称为卡瓦列利原理。
就好比图中的这三个几何体,与底面等距离处的截面积都相等,这三个几何体体积是相等的。祖暅也叫做祖暅之,是祖冲之的儿子。祖冲之父子在数学上均有很大的成就。
我国古代数学家刘徽、祖冲之父子通过牟合方盖这种工具对球的体积进行推导。所谓的牟合方盖其实就是立方体被两个直径是立方体边长的圆柱体所截所得的一个图形。
学过解析几何的同学都知道,平面直角坐标系分四个象限,立体坐标系分为八个卦限。象限和卦限是按照我国传统文化来翻译的,也就是易经中说的四象、八卦的意思。
结合勾股定理以及祖暅原理,可以知道左边的牟合方盖(八分之一)的体积等于右边的立方体挖去一个与其等底等高锥体之后剩余部分的体积,于是牟合方盖(八分之一)的体体积等于2/3r^3,整个牟合方盖的体积为16/3r^3。